Sistemas de comunicación

Telégrafo:
-¿Qué es?
El telégrafo es un dispositivo que utiliza señales eléctricas para la transmisión de mensajes de texto codificados, mediante líneas alámbricas o radiales. El telégrafo eléctrico, o más comúnmente sólo 'telégrafo', reemplazó a los sistemas de transmisión de señales ópticas de semáforos, como los diseñados por Claude Chappe para el ejército francés, y Friedrich Clemens Gerke para el ejército prusiano, convirtiéndose así en la primera forma de comunicación eléctrica.
-Historia:
En 1746 el científico y religioso francés Jean Antoine Nollet, reunió aproximadamente a doscientos monjes en un círculo de alrededor de una milla (1,6 km) de circunferencia, conectándolos entre sí con trozos de alambre de hierro. Nollet luego descargó una batería de botellas de Leyden a través de la cadena humana y observó que cada uno reaccionaba en forma prácticamente simultánea a la descarga eléctrica, demostrando así que la velocidad de propagación de electricidad era muy alta.
En 1753 un colaborador anónimo de la publicación Scots Magazine sugirió un telégrafo electrostático. Usando un hilo conductor por cada letra del alfabeto, podía ser transmitido un mensaje mediante la conexión de los extremos del conductor a su vez a una máquina electrostática, y observando las desviación de unas bolas de médula en el extremo receptor. Los telégrafos que empleaban la atracción electrostática fueron el fundamento de los primeros experimentos de telegrafía eléctrica en Europa, pero fueron abandonados por ser imprácticos y nunca se convirtieron en un sistema de comunicación muy útil.
En 1800 Alessandro Volta inventó la pila voltaica, lo que permitió el suministro continuo de una corriente eléctrica para la experimentación. Esto se convirtió en una fuente de una corriente de baja tensión mucho menos limitada que la descarga momentánea de una máquina electrostática, con botellas de Leyden que fue el único método conocido anteriormente al surgimiento de fuentes artificiales de electricidad.
Otro experimento inicial en la telegrafía eléctrica fue el telégrafo electroquímico creado por el médico, anatomista e inventor alemán Samuel Thomas von Sömmering en 1809, basado en un diseño menos robusto de 1804 del erudito y científico catalán Francisco Salvá Campillo. Ambos diseños empleaban varios conductores (hasta 35) para representar a casi todas las letras latinas y números. Por lo tanto, los mensajes se podrían transmitir eléctricamente hasta unos cuantos kilómetros (en el diseño de von Sömmering), con cada uno de los cables del receptor sumergido en un tubo individual de vidrio lleno de ácido. Una corriente eléctrica se aplicaba de forma secuencial por el emisor a través de los diferentes conductores que representaban cada carácter de un mensaje; en el extremo receptor las corrientes electrolizaban el ácido en los tubos en secuencia, liberándose corrientes de burbujas de hidrógeno junto a cada carácter recibido. El operador del receptor telégrafo observaba las burbujas y podría entonces registrar el mensaje transmitido, aunque a una velocidad de transmisión muy baja. El principal inconveniente del sistema era su coste prohibitivo, debido a la fabricación de múltiple circuitos de hilo conductor que empleaba, a diferencia del cable con un solo conductor y retorno a tierra, utilizado por los telégrafos posteriores.
En 1816, Francis Ronalds instaló un sistema de telegrafía experimental en los terrenos de su casa en Hammersmith, Londres. Hizo tender 12,9 km de cable de acero cargado con electricidad estática de alta tensión, suspendido por un par de celosías fuertes de madera con 19 barras cada una. En ambos extremos del cable se conectaron indicadores giratorios, operados con motores de relojería, que tenían grabados los números y letras del alfabeto.
El físico Hans Christian Ørsted descubrió en 1820 la desviación de la aguja de una brújula debida a la corriente eléctrica. Ese año, el físico y químico alemán Johann Schweigger basándose en este descubrimiento creó el galvanómetro, arrollando una bobina de conductor alrededor de una brújula, lo que podía usarse como indicador de corriente eléctrica.
En 1821, el matemático y físico francés André-Marie Ampère sugirió un sistema telegráfico a base de un conjunto de galvanómetros, uno por cada carácter transmitido, con el cual afirmó haber experimentado con éxito. Pero en 1824, su colega británico Peter Barlow dijo que tal sistema solo podía trabajar hasta una distancia aproximada de alrededor de 200 pies (61 m) y que, por lo tanto, era impráctico.
En 1825, el físico e inventor británico William Sturgeon inventó el electroimán, arrollando hilo conductor sin aislar alrededor de una herradura de hierro barnizada. El estadounidense Joseph Henry mejoró esta invención en 1828 colocando varios arrollamientos de alambre aislado alrededor de una barra de hierro, creando una electroimán más potente. Tres años después, Henry desarrolló un sistema de telegrafía eléctrica que mejoró en 1835 gracias al relé que inventó, para que fuera usado a través de largos tendidos de cables ya que este dispositivo electromecánico podía reaccionar frente a corrientes eléctricas débiles.
-Ejemplos de telégrafos:

.Telégrafo de Schilling:

Por su parte, el científico y diplomático ruso Pavel Schilling, a partir del invento de Von Sömmering empezó a estudiar los fenómenos eléctricos y sus aplicaciones. A partir de sus conocimientos creó en 1832 otro telégrafo electromagnético, cuyo emisor era un tablero de 16 teclas en blanco y negro, como las de un piano, que servía para enviar los caracteres, mientras que el receptor consistía de seis galvanómetros de agujas suspendidas por hilos de seda cuyas deflexiones servían de indicación visual de los caracteres enviados. Las señales eran decodificadas en caracteres según una tabla desarrollada por el inventor. Las estaciones telegráficas, según la idea inicial de Schilling, estaban unidas por un tendido de 8 conductores, de los cuales 6 estaban conectados a los galvanómetros, uno se usaba como conductor de retorno o tierra y otro como señal de alarma. Schilling realizó una mejora posterior y redujo el número de conductores a dos. El 21 de octubre de 1832, Schilling logró una transmisión a corta distancia de señales entre dos telégrafos en diferentes habitaciones de su apartamento. En 1836 el gobierno británico intentó comprar el diseño, pero Schilling aceptó la propuesta del tsar Nicolás I de Rusia. El telégrafo de Schilling fue probado en un tendido de más de 5 km de cable subterráneo y submarino experimental, dispuesto alrededor del edificio principal del Almirantazgo en San Petersburgo y fue aprobado un telégrafo entre el Palacio Imperial de Peterhof y la base naval de Kronstadt. Sin embargo, el proyecto fue cancelado después de la muerte de Schilling en 1837. Debido a la teoría de operación de su telégrafo, Schilling fue también uno de los primeros en poner en práctica la idea de un sistema binario de transmisión de señales.

.El telégrafo de Gauss-Weber y Carl Steinheil

El matemático, astrónomo y físico alemán Johann Carl Friedrich Gauss y su amigo, el profesor Wilhelm Eduard Weber, desarrollaron en 1831 una nueva teoría sobre el magnetismo terrestre. Entre los inventos más importantes de la época estuvo el magnetómetro unifilar y bifilar, que permitió a ambos medir incluso los más pequeños desvíos de la aguja de una brújula. El 6 de mayo de 1833, ambos instalaron una línea telegráfica de 1200 metros de longitud sobre los tejados de la población alemana de Gotinga donde ambos trabajaban, uniendo la universidad con el observatorio astronómico. Gauss combinó el multiplicador Poggendorff-Schweigger con su magnetómetro para construir un galvanómetro. Para cambiar la dirección de la corriente eléctrica, construyó un interruptor de su propia invención. Como resultado, fue capaz de hacer que la aguja del extremo receptor se moviera en la dirección establecida por el interruptor en el otro extremo de la línea.
En un principio, Gauss y Weber utilizaron el telégrafo para coordinar el tiempo, pero pronto desarrollaron otras señales y, por último, su propia codificación de caracteres, que en la actualidad es considerada de 5 bits. El alfabeto fue codificado en un código binario que fue transmitido por impulsos de tensión positivos o negativos que fueron generados por medio de una bobina de inducción en movimiento hacia arriba y hacia abajo sobre un imán permanente y la conexión de la bobina con los cables de transmisión mediante el conmutador. La página del cuaderno de laboratorio de Gauss que contiene su código y el primer mensaje transmitido, así como una réplica del telégrafo en la década de 1850 bajo las instrucciones de Weber se mantienen en la Facultad de Física de la Universidad de Gotinga. Gauss estaba convencido de que esta comunicación sería una ayuda a los pueblos de su país. Más adelante en el mismo año, en lugar de una pila voltaica, Gauss utilizó un pulso de inducción, lo que le permitió transmitir siete caracteres por minuto en lugar de dos. Los inventores y la universidad carecían de fondos para desarrollar el telégrafo por su propia cuenta, por lo que recibió fondos del científico alemán Alexander von Humboldt. El ingeniero y astrónomo alemán Karl August von Steinheil en Múnich fue capaz de construir una red telegráfica dentro de la ciudad en 1835 y 1836 y aunque creó un sistema de escritura telegráfica, este no se adoptó en la práctica. Se instaló una línea de telégrafo a lo largo del ferrocarril alemán por primera vez en 1835.

-Funcionamiento del telégrafo de Morse:
Cuando en la estación emisora se cierra el interruptor, comúnmente llamado manipulador, circula una corriente desde la batería eléctrica hasta la línea y el electroimán, lo que hace que sea atraída una pieza metálica terminada en un punzón que presiona una tira de papel, que se desplaza mediante unos rodillos de arrastre, movidos por un mecanismo de relojería, sobre un cilindro impregnado de tinta, de tal forma que, según la duración de la pulsación del interruptor, se traducirá en la impresión de un punto o una raya en la tira de papel. La combinación de puntos y rayas en el papel se puede traducir en caracteres alfanuméricos mediante el uso de un código convenido, en la práctica el más utilizado durante muchos años ha sido el código Morse.
Posteriores mejoras de los dispositivos emisores y transmisores han permitido la transmisión de mensajes de forma más rápida, sin necesidad de recurrir a un manipulador y a la traducción manual del código, así como el envío simultáneo de más de una transmisión por la misma línea. Uno de estos dispositivos telegráficos avanzados es el teletipo, cuyo modelo inicial era una máquina de escribir especial que transmitía como señales eléctricas las pulsaciones sobre un teclado, mientras imprimía sobre un rollo de papel o hacía perforaciones en una cinta también hecha de papel. Las formas más modernas de esta máquina se fabricaron con un monitor o pantalla en lugar de una impresora. El sistema todavía es utilizado por personas sordas o con serias discapacidades auditivas, a fin de enviar mensajes de texto sobre la red telefónica.
La necesidad de codificar el texto en puntos y rayas para transmitirlo y descodificarlo antes de escribir el telegrama llevó al desarrollo de otros tipos de telegrafía que realizaran estas tareas de forma automática. El telégrafo de Hughes se basa en dos ruedas que contienen todos los símbolos o caracteres que se pueden transmitir y giran, sincronizadas, a la misma velocidad. Entonces, si en la rueda del transmisor tiene, digamos, la C abajo, el receptor también. Esto permite que, transmitiendo un pulso en el momento adecuado, el receptor imprima el carácter correspondiente. Como la velocidad de la transmisión depende del número de símbolos disponibles, éstos están separados en dos bancos (letras y números), de modo que comparten el mismo código una letra y un número. Existen dos blancos o espacios, llamados "blanco de letras" y "blanco de números", que además de crear un espacio para separar las palabras o los números, indican si a continuación se transmitirán letras o números. El transmisor tiene un teclado, semejante a un piano, con los caracteres.
 El radiotelegrafista pulsa la tecla adecuada y, cuando la rueda que contiene los caracteres está en la posición adecuada, el aparato transmite un pulso a la línea. En el receptor, un electroimán golpea la cinta de papel contra la rueda que contiene los tipos. Estas ruedas se mueven mediante un mecanismo de relojería, con motor de pesas o hidráulico, según los casos. Al comienzo del día se iniciaba un protocolo de sincronización, transmitiendo un mensaje diseñado a tal efecto. La velocidad de transmisión era inferior a la del sistema Morse, y dependía del radiotelegrafista, ya que uno experimentado era capaz de enviar varios caracteres en un giro de la rueda.

Teléfono: 

-¿Qué es?
El teléfono es un dispositivo de telecomunicación diseñado para transmitir señales acústicas por medio de señales eléctricas a distancia. Durante mucho tiempo Alexander Graham Bell fue considerado el inventor del teléfono, junto con Elisha Gray. Sin embargo Graham Bell no fue el inventor de este aparato, sino solamente el primero en patentarlo. Esto ocurrió en 1876. El 11 de junio de 2002 el Congreso de Estados Unidos aprobó la resolución 269, por la que se reconocía que el inventor del teléfono había sido Antonio Meucci, que lo llamó teletrófono, y no Alexander Graham Bell. En 1871 Meucci solo pudo, por dificultades económicas, presentar una breve descripción de su invento, pero no formalizar la patente ante la Oficina de Patentes de Estados Unidos.
-Historia de su invención:
Alrededor del año 1857 Antonio Meucci construyó un teléfono para conectar su oficina con su dormitorio, ubicado en el segundo piso, debido al reumatismo de su esposa. Sin embargo carecía del dinero suficiente para patentar su invento, por lo que lo presentó a una empresa (Western Union, quienes promocionaron el «invento» de Graham Bell) que no le prestó atención, pero que, tampoco le devolvió los materiales.
En 1876, tras haber descubierto que para transmitir voz humana sólo se podía utilizar una corriente continua, el inventor escocés nacionalizado en EE.UU. Alexander Graham Bell, construyó y patentó unas horas antes que su compatriota Elisha Gray el primer teléfono capaz de transmitir y recibir voz humana con toda su calidad y timbre. Tampoco se debe dejar de lado a Thomas Alva Edison, que introdujo notables mejoras en el sistema, entre las que se encuentra el micrófono de gránulos de carbón.
El 11 de junio de 2002 el Congreso de los Estados Unidos aprobó la resolución 269, por la que reconoció que el inventor del teléfono había sido Antonio Meucci y no Alexander Graham Bell. En la resolución, aprobada por unanimidad, los representantes estadounidenses estiman que «la vida y obra de Antonio Meucci debe ser reconocida legalmente, y que su trabajo en la invención del teléfono debe ser admitida». Según el texto de esta resolución, Antonio Meucci instaló un dispositivo rudimentario de telecomunicaciones entre el sótano de su casa de Staten Island (Nueva York) y la habitación de su mujer, en la primera planta.
-Evolución del teléfono y su utilización:
Desde su concepción original se han ido introduciendo mejoras sucesivas, tanto en el propio aparato telefónico como en los métodos y sistemas de explotación de la red.
En lo que se refiere al propio aparato telefónico, se pueden señalar varias cosas:
  • La introducción del micrófono de carbón, que aumentaba de forma considerable la potencia emitida, y por tanto el alcance máximo de la comunicación.
  • El dispositivo antilocal Luink, para evitar la perturbación en la audición causada por el ruido ambiente del local donde está instalado el teléfono.
  • La marcación por pulsos mediante el denominado disco de marcar.
  • La marcación por tonos multifrecuencia.
  • La introducción del micrófono de electret o electret, micrófono de condensador, prácticamente usado en todos los aparatos modernos, que mejora de forma considerable la calidad del sonido.
En cuanto a los métodos y sistemas de explotación de la red telefónica, se pueden señalar:
  • La telefonía fija o convencional, que es aquella que hace referencia a las líneas y equipos que se encargan de la comunicación entre terminales telefónicos no portables, y generalmente enlazados entre ellos o con la central por medio de conductores metálicos.
  • La central telefónica de conmutación manual para la interconexión mediante la intervención de un operador/a de distintos teléfonos (Harlond), creando de esta forma un primer modelo de red. Primeramente fueron las centrales manuales de Batería local (teléfonos alimentados por pilas o baterías) y posteriormente fueron las centrales manuales de Batería central (teléfonos alimentados desde la central).
  • La introducción de las centrales telefónicas de conmutación automática, constituidas mediante dispositivos electromecánicos, de las que han existido, y en algunos casos aún existen, diversos sistemas:sistema de conmutación rotary (en España sistemas 7A1, 7A2, 7D, 7BR, AGF), y sistema con conmutador de barras cruzadas (En España: Sistemas Pentaconta 1000, PC32, ARF) y otros más complejos.
  • Las centrales de conmutación automática electromecánicas, pero controladas por computadora. También llamadas centrales semielectrónicas (En España: sistemas Pentaconta 2000, Metaconta, ARE).
  • Las centrales digitales de conmutación automática totalmente electrónicas y controladas por ordenador, la práctica totalidad de las actuales, que permiten multitud de servicios complementarios al propio establecimiento de la comunicación (los denominados servicios de valor añadido). En España: Sistemas AXE (de Ericsson), Sistema 12 o 1240 (Alcatel) y sistema 5ESS (Lucent).
  • La introducción de la Red Digital de Servicios Integrados (RDSI) y las técnicas DSL o de banda ancha (ADSL, HDSL, etc,), que permiten la transmisión de datos a más alta velocidad.
  • La telefonía móvil o celular, que posibilita la transmisión inalámbrica de voz y datos, pudiendo ser estos a alta velocidad en los nuevos equipos de tercera generación.
Existen casos particulares, en telefonía fija, en los que la conexión con la central se hace por medios radioeléctricos, como es el caso de la telefonía rural mediante acceso celular (TRAC), en la que se utiliza parte de la infraestructura de telefonía móvil para facilitar servicio telefónico a zonas de difícil acceso para las líneas convencionales de hilo de cobre. No obstante, estas líneas a todos los efectos se consideran como de telefonía fija.
 -Funcionamiento:
El teléfono convencional está formado por dos circuitos que funcionan juntos: el circuito de conversación, que es la parte analógica, y el circuito de marcación, que se encarga de la marcación y llamada. Tanto las señales de voz como las de marcación y llamada (señalización), así como la alimentación, comparten el mismo par de hilos; a esto a veces se le llama «señalización dentro de la banda (de voz)».
La impedancia característica de la línea es 600Ω. Lo más llamativo es que las señales procedentes del teléfono hacia la central y las que se dirigen a él desde ella viajan por esa misma línea de sólo 2 hilos. Para poder combinar en una misma línea dos señales (ondas electromagnéticas) que viajen en sentidos opuestos y para luego poder separarlas se utiliza un dispositivo llamado transformador híbrido o bobina híbrida, que no es más que un acoplador de potencia (duplexor).
.Circuito de conversación: la híbrida telefónica
El circuito de conversación consta de cuatro componentes principales: la bobina híbrida; el auricular; el micrófono de carbón y una impedancia de 600 Ω, para equilibrar la híbrida. La híbrida consiste en un transformador con tres embobinados, L1, L2 y L3, según se muestra en la figura 1. Los componentes se conectan de acuerdo a la misma figura 1.
 .Transferencia de señal desde el micrófono a la línea:
La señal que se origina en el micrófono se reparte a partes iguales entre L1 y L2. La primera va a la línea y la segunda se pierde en la carga, pero L1 y L2 inducen corrientes iguales y de sentido contrario en L3, que se cancelan entre sí, evitando que la señal del micrófono alcance el auricular. En la práctica la impedancia de la carga no es exactamente igual a la impedancia de la línea, por lo que las corrientes inducidas en L3 no se anulan completamente. Esto tiene un efecto útil, cual es que parte de la señal generada en el micrófono se escuche también en el auricular local (efecto «side tone»), lo que permite que quién habla se escuche asimismo percibiendo que el «circuito no está muerto».
.Transferencia de señal desde la línea al auricular: 
La señal que viene por la línea provoca la circulación de corrientes tanto por L1 como por L2. Estas corrientes inducen, sumándose, en L3 la corriente que se lleva al auricular. Si bien la señal que viene por la línea provoca la circulación de una pequeña corriente por el micrófono, este hecho no afecta la conversación telefónica. El circuito de conversación real es algo más complejo: a) añade un varistor a la entrada, para mantener la polarización del micrófono a un nivel constante, independientemente de lo lejos que esté la central local; y b) mejora el efecto «side tone», conectando el auricular a la impedancia de carga, para que el usuario tenga una pequeña realimentación y pueda oír lo que dice. Sin ella, tendería a elevar mucho la voz. En la actualidad los terminales telefónicos son construidos con híbridas de estado sólido y no en base al transformador multibobinado indicado anteriormente. Las híbridas de estado sólido, que se construyen con un circuito integrado ad hoc (como el MC34014P de Motorola) y unos cuantos componentes electrónicos, tienen una respuesta de frecuencia más plana ya que no usan embobinados. Los embobinados (impedancia inductiva) introducen distorsión al atenuar mucho más las señales de alta frecuencia que las de baja frecuencia. Las híbridas de estado sólido se utilizan en conjunto con micrófonos de condensador y altoparlantes de 16 ohms.
.Circuito de marcación:
Finalmente, el circuito de marcación mecánico, formado por el disco, que, cuando retrocede, acciona un interruptor el número de veces que corresponde al dígito. El cero tiene 10 pulsos. El timbre va conectado a la línea a través del «gancho», que es un conmutador que se acciona al descolgar. Una tensión alterna de 75 V en la línea hace sonar el timbre.
.Marcación por tonos:
Como la línea alimenta el micrófono a 4.8 V, esta tensión se puede utilizar para alimentar, también, circuitos electrónicos. Uno de ellos es el marcador por tonos. Tiene lugar mediante un teclado que contiene los dígitos y alguna tecla más (* y #), cuya pulsación produce el envío de dos tonos simultáneos para cada pulsación. Estos circuitos podían ser tanto bipolares (I²L, normalmente) como CMOS, y añadían nuevas prestaciones, como repetición del último número (redial) o memorias para marcación rápida, pulsando una sola tecla.


.Timbre:
El timbre electromecánico, que se basa en un electroimán que acciona un badajo que golpea la campana a la frecuencia de la corriente de llamada (25 Hz), se ha visto sustituido por generadores de llamada electrónicos, que, igual que el timbre electromecánico, funcionan con la tensión de llamada (75 V de corriente alterna a una frecuencia de 25 Hz, enviada superpuesta a los 48 Voltios de tensión continua de la línea). Suelen incorporar un oscilador de periodo en torno a 0,5 s, que conmuta la salida entre dos tonos producidos por otro oscilador. El circuito va conectado a un pequeño altavoz piezoeléctrico. Resulta curioso que se busquen tonos agradables para sustituir la estridencia del timbre electromecánico, cuando éste había sido elegido precisamente por ser muy molesto y obligar así al usuario a atender la llamada gracias al timbre.

 

 Radio:
-¿Qué es?:
La radio (entendida como radiofonía o radiodifusión, términos no estrictamente sinónimos) es un medio de comunicación que se basa en el envío de señales de audio a través de ondas de radio, si bien el término se usa también para otras formas de envío de audio a distancia como la radio por In.
 -Funcionamiento:
Un receptor de radio consiste en un circuito eléctrico, diseñado de tal forma que permite filtrar o separar una corriente pequeñísima, que se genera en la antena, por efecto de las ondas electromagnéticas (el fenómeno se llama inducción electromagnética) que llegan por el aire normalmente (aunque viajan por cualquier medio, inclusive el vacío) y luego amplificarla selectivamente, miles de veces, para enviarla hacia un elemento con un electroimán, que es el altavoz (o parlante), donde se transforman las ondas eléctricas en sonido.
En este circuito hay un condensador variable, que en las radios antiguas iba adosado a un botón de mando o perilla, de modo que al girarlo se varía la capacidad del condensador. El efecto de la variación de la capacidad del condensador en el circuito es filtrar corrientes de distinta frecuencia, y por lo tanto, escuchar lo transmitido por distintas emisoras de radio.
El receptor de radio más simple que podemos construir es el denominado en los orígenes de la radio receptor de galena.
Se llamaba así porque el material semiconductor que se utilizaba como diodo detector era una pequeña piedra de este material sobre la que hacía contacto un fino hilo metálico al que se denominaba barba de gato. Este componente es el antecesor inmediato de los diodos de germanio o silicio utilizados actualmente.
Este receptor rudimentario sólo permite la audición de emisoras potentes y no muy lejanas, ya que no dispone de amplificación de ningún tipo.
-Evolución de los receptores:
El diodo de galena inicial fue sustituido posteriormente por la válvula de vacío, componente electrónico basado en el efecto Edison, esto es, la propiedad que tienen los metales en caliente de liberar electrones. Esta válvula permitió conseguir una mejor sensibilidad.
La invención del transistor al final de los años cuarenta, permitió la miniaturización de los receptores y su fácil portabilidad, al no depender de la conexión a la red eléctrica.
También las técnicas de recepción han evolucionado notablemente desde los inicios de la radio, empezando por la utilización de otros tipos de modulación distintos a la de amplitud, como la modulación de frecuencia, la Banda lateral única, la modulación digital, las diversas configuraciones de los receptores, la propia evolución de los componentes, desde la válvula termoiónica al transistor y luego al circuito integrado.
En lo que a la configuración se refiere, el receptor más elaborado y más eficiente, en cuanto a sensibilidad y selectividad combinadas es el denominado superheterodino, aunque han existido otros más sencillos pero menos eficientes, como el de radiofrecuencia sintonizada, el regenerativo y el superregenerativo.
-Tipos de receptores:
.Receptor FM
La transmisión en frecuencia modulada aporta varias ventajas, en comparación con la amplitud modulada:
  • Mayor fidelidad, se debe a que en FM la señal de modulación (audio) fluctúa entre 50 Hz a 15 Khz. el mensaje musical o hablado que contiene la portadora es más completo y lógicamente cuando el mensaje se reproduce en el parlante del receptor el sonido es más rico de tonos y armónicos, mientras la AM solo llega a una frecuencia máxima de 5 Khz.
  • Tiene la posibilidad de eliminar señales indeseables, se debe a que en FM la modulación la contiene la onda portadora en forma de frecuencia variable y amplitud constante, toda interferencia que causa variaciones puede ser eliminada fácilmente usando en el receptor la etapa limitadora. Pero en AM el mensaje se tiene en forma de variaciones de amplitud si usamos parte de limitador se estaría limitando parcialmente parte de la señal útil.
.Elementos del receptor de FM
En la actualidad los receptores FM están compuestos por transistores y por circuitos integrados, que deben trabajar a una frecuencia de 88 a 108 Mhz.
  • Antena receptora: En receptores portátiles las antenas son de tipo telescópico y los que tienen en el hogar se forma de un conjunto de conductores que son cortados de una longitud apropiada para una banda de 88 a108 MHz.
  • Amplificador de radiofrecuencia: Es el tipo sintonizado, básicamente se encarga de seleccionar una emisora de FM y posteriormente la entrega al sistema conversor conformada por un transistor de alta frecuencia con base a tierra o emisor a tierra.
  • Sección conversora: Cambia la frecuencia portadora de emisora seleccionada a un valor de FI (Frecuencia Intermedia) cuyo valor es de 10.7 MHz. En receptores baratos y económicos la conversora usada es auto DINA y en receptores de mayor costo o valor es del tipo de oscilador separado y con control automático de ganancia.
  • Canal o sección de frecuencia intermedia: Formado por dos o tres etapas, sintonizado para una frecuencia de 10.7 MHz, se encarga de seleccionar y amplificar la nueva frecuencia a que fue convertida la estación seleccionada cuyo componente finalmente es entregado al discriminador. El canal de FI. (Frecuencia Intermedia) realmente constituye el amplificador principal de la sección de RF.(Radiofrecuencia) tanto de FM y AM, con la única diferencia de que existen dos canales diferentes.
  • Discriminador FM: Tiene a su cargo la función demoduladora, es decir se encarga de extraer el envolvente de modulación, en consecuencia en su circuito de salida obtendremos la señal de audio determinada principalmente por la forma de conexión de los diodos, determinando dos tipos de discriminadores: discriminador de Foster y detector de relación.
  • Sección de audio: Es el amplificador de audio que sirve tanto como para AM y FM. Comienza en el control de volumen (mono ó estereo) precedidos de una llave selectora para operar con FM ó con AM. Si el aparato es del sistema estereo la calidad es mejor con sus canales Izquierdo-Derecho que atraviesan el codificador. Cada canal Izq.-Der. opera con su propio parlante.
  • Preamplificador de audiofrecuencia
  • Parlantes
  • Fuente de alimentación
-Un poco de historia:
.Descubrimiento de las ondas electromagnéticas de la radio:
Las bases teóricas de la propagación de ondas electromagnéticas fueron descritas por primera vez por James Clerk Maxwell en un documento dirigido a la Royal Society (1873) titulado Una teoría dinámica del campo electromagnético, que describía sus trabajos entre los años 1861 y 1865: su teoría, básicamente, era que los campos eléctricos variables crean campos magnéticos variables, y viceversa, con lo que unos u otros crearán a su vez nuevos campos eléctricos o magnéticos variables que se propagarán por el espacio en forma de campos electromagnéticos variables sucesivos los cuales se alejarán en forma de ondas electromagnéticas de la fuente donde se originaron.
Heinrich Rudolf Hertz, en 1888, fue el primero en demostrar la teoría de Maxwell, al idear como "crear" artificialmente tales ondas electromagnéticas y como detectarlas y a continuación llevando a la práctica emisiones y recepciones de estas ondas y analizando sus características físicas demostrando que las ondas creadas artificialmente tenían todas las propiedades de las ondas electromagnéticas "teóricas" y descubriendo que las ecuaciones de las ondas electromagnéticas podían ser reformuladas en una ecuación diferencial parcial denominada ecuación de onda.
El dispositivo que diseñó para producir ondas electromagnéticas consistía en dos barras metálicas del mismo tamaño alineadas y muy próximas por uno de sus extremos y que terminaban en una bola metálica por el otro; sobre una de estas barras eran inyectados "paquetes de electrones" a muy alta tensión que a su vez eran extraídos de la otra barra; los intensos cambios en el número de electrones que esto provocaba en las barras daba origen a descargas de electrones de una a otra barra en forma de chispas a través del estrecho espacio que las separaba, descargas que se producían de una forma que se podría calificar de elástica u oscilante ya que tras una "inyección" de electrones en una barra se producían descargas alternadas de electrones de una a otra barra cada vez de menor intensidad hasta desaparecer al fin por las resistencias eléctricas.
Estos cambios alternantes en el número de electrones que tenía cada barra hacía que a lo largo de ellas se propagaran variaciones de la carga eléctrica lo que originaba campos eléctricos variables de signo opuesto en torno de ellas. Tales campos eléctricos variables daban origen a campos magnéticos variables y éstos a nuevos campos eléctricos variables con lo que se producían ondas electromagnéticas que se difundían desde esas barras.
Las "inyecciones" y "sustracciones" de "paquetes de electrones" se conseguían mediante intensos impulsos eléctricos provocados por una bobina de un gran número de espiras que tenía sus extremos unidos cada uno a una de las dos barras y que tenía otra bobina de un pequeño número de espiras concéntrica a ella. Esta segunda bobina recibía breves impulsos eléctricos en baja tensión que inducía a la bobina de gran número de espiras la cual los transformaba en impulsos de muy alta tensión.
El receptor era una barra metálica de forma circular y con sus dos extremos muy próximos uno de otro; la longitud de esta barra estaba calculada para que fuera resonante a los campos magnéticos variables originados en las barras emisoras; las corrientes de electrones provocadas en tal barra receptora por los campos magnéticos variables que captaba causaban pequeñas descargas de electrones entre sus extremos, descargas que eran visibles en forma de chispas.
Hertz dio un paso de gigante al afirmar y probar que las ondas electromagnéticas se propagan a una velocidad similar a la velocidad de la luz y que tenían las mismas características físicas que las ondas de luz, como las de reflejarse en superficies metálicas, desviarse por prismas, estar polarizadas, etc., sentando así las bases para el envío de señales de radio.
Como homenaje a Hertz por este descubrimiento, las ondas electromagnéticas pasaron a denominarse ondas hertzianas.

.Primeras transmisiones radiofónicas:
La Nochebuena de 1906, utilizando el principio heterodino, Reginald Aubrey Fessenden transmitió desde Brant Rock Station (Massachusetts) la primera radiodifusión de audio de la historia. Así, buques en el mar pudieron oír una radiodifusión que incluía a Fessenden tocando al violín la canción O Holy Night y leyendo un pasaje de la Biblia.
Las primeras transmisiones para entretenimiento regulares, comenzaron en 1920 en Argentina. El día 27 de agosto desde la azotea del Teatro Coliseo de Buenos Aires, la Sociedad Radio Argentina transmitió la ópera de Richard Wagner, Parsifal, comenzando así con la programación de la primera emisora de radiodifusión en el mundo. Su creador, organizador y primer locutor del mundo fue el Dr. Enrique Telémaco Susini. Para 1925 ya había doce estaciones de radio en esa ciudad y otras diez en el interior del país, los horarios eran breves y muchas veces entrecortados, desde el atardecer hasta la medianoche.
La primera emisora de carácter regular e informativo es la estación 8MK (hoy día WWJ) de Detroit, Míchigan (Estados Unidos) perteneciente al diario The Detroit News que comenzó a operar el 20 de agosto de 1920 en la frecuencia de 1500 kHz., aunque muchos autores opinan que es la KDKA de Pittsburg que comenzó a emitir en noviembre de 1920, porque obtuvo una licencia comercial antes que aquélla.
En 1922, en Inglaterra, la estación de Chelmsford, perteneciente a la Marconi Wireless, emitía dos programas diarios, uno sobre música y otro sobre información. El 4 de noviembre de 1922 se fundó en Londres la British Broadcasting Corporation (BBC) que monopolizó las ondas inglesas.
Ese mismo año, la radio llega a Chile, con la Primera Transmisión Radial que la Universidad de Chile realizó desde el Diario El Mercurio de Santiago.

.Desarrollos durante el siglo XX:
En 1906, Alexander Lee de Forest modificó el diodo inventado en 1904 por John Fleming añadiéndole un tercer electrodo, con la intención de que detectase las ondas de radio sin violar la patente del diodo, creando así el triodo. Posteriormente se encontró que el triodo tenía la capacidad de amplificar las señales radioeléctricas y también generarlas, especialmente cuando se le hacía trabajar en alto vacío, algo que fue descubierto, analizado y perfeccionado por técnicos de AT&T y de General Electric, lo que permitió la proliferación de las emisiones de radio. El científico austriaco de origen judío Von Lieben en un proceso totalmente independiente pero paralelo al seguido en Estados Unidos también inventó el triodo.
En 1907, inventaba la válvula que modula las ondas de radio que se emiten y de esta manera creó ondas de alta potencia en la transmisión.
En 1909 Marconi, con Karl Ferdinand Braun, fue también premiado con el Premio Nobel de Física por sus "contribuciones al desarrollo de la telegrafía sin hilos".
La nueva gran invención fue la válvula termoiónica detectora, inventada por un equipo de ingenieros de Westinghouse.
Un gran paso en la calidad de los receptores, se produce en 1918 cuando Edwin Armstrong inventa el superheterodino.
En los primeros tiempos de la radio toda la potencia generada por el transmisor pasaba a través de un micrófono de carbón. En los años 1920 la amplificación mediante válvula termoiónica revolucionó tanto los radiorreceptores como los radiotransmisores. Philips, Bell, Radiola y Telefunken consiguieron, a través de la comercialización de receptores de válvulas que se conectaban a la red eléctrica, la audición colectiva de la radio en 1928. No obstante, fueron los laboratorios Bell los responsables del transistor y, con ello, del aumento de la comunicación radiofónica.
En los años cincuenta la tecnología radiofónica experimentó un gran número de mejoras que se tradujeron en la generalización del uso del transistor.
Normalmente, las aeronaves utilizaban las estaciones comerciales de radio de modulación de amplitud (AM) para la navegación. Esto continuó así hasta principios de los años sesenta en que finalmente se extendió el uso de los sistemas VOR.
A principios de los años treinta radio-operadores aficionados inventaron la transmisión en banda lateral única (BLU).
En 1933 Edwin Armstrong describe un sistema de radio de alta calidad, menos sensible a los parásitos radioeléctricos que la AM, utilizando la modulación de frecuencia (FM). A finales de la década este procedimiento se establece de forma comercial, al montar a su cargo el propio Armstrong una emisora con este sistema.
En 1948, la radio se hace visible: se desarrolla abiertamente la televisión.
En 1952, se transmite televisión comercial en color sistema NTSC, en EE.UU. El primer programa en ser transmitido en color fue Meet the Press (Encuentro con la Prensa) de la cadena NBC, un ciclo periodístico que sigue emitiéndose hasta nuestros días.
En 1956 se desarrolla el primer sistema de televisión europeo, que basándose en él mejora el NTSC de Estados Unidos. El sistema es el llamado SECAM. En España durante varios meses TVE transmitió en pruebas en SECAM, aunque finalmente la norma que adoptó fue PAL (ver 1963).
En 1957, la firma Regency introduce el primer receptor transistorizado, lo suficientemente pequeño para ser llevado en un bolsillo y alimentado por una pequeña batería. Era fiable porque al no tener válvulas no se calentaba. Durante los siguientes veinte años los transistores desplazaron a las válvulas casi por completo, excepto para muy altas potencias o frecuencias.
En 1963, se establece la primera comunicación radio vía satélite. Se desarrolla el sistema de televisión en color PAL que mejora el NTSC. La norma que se utiliza en España es PAL. La ventaja del PAL sobre el SECAM es que su circuitería es más sencilla.
Al final de los años sesenta la red telefónica de larga distancia en EE.UU. comienza su conversión a red digital, empleando radio digital para muchos de sus enlaces.
En los años setenta comienza a utilizarse el LORAN, primer sistema de radionavegación. Pronto, la Marina de EE.UU. experimentó con la navegación satélite, culminando con la invención y lanzamiento de la constelación de satélites GPS en 1987.
Entre las décadas de los años 1960 y 1980 la radio entra en una época de declive debido a la competencia de la televisión y el hecho que las emisoras dejaron de emitir en onda corta (de alcance global) por VHF (el cual solo tiene un alcance de cientos de kilómetros)
En los años 1990 las nuevas tecnologías digitales comienzan a aplicarse al mundo de la radio. Aumenta la calidad del sonido y se hacen pruebas con la radio satelital (también llamada radio HD), esta tecnología permite el resurgimiento en el interés por la radio.
A finales del siglo XX, experimentadores radioaficionados comienzan a utilizar ordenadores personales para procesar señales de radio mediante distintas interfaces (Radio Packet).
.Historia reciente:
En la historia reciente de la radio, han aparecido las radios de baja potencia, constituidas bajo la idea de radio libre o radio comunitaria, con la idea de oponerse a la imposición de un monólogo comercial de mensajes y que permitan una mayor cercanía de la radio con la comunidad.
Hoy en día la radio a través de Internet avanza con celeridad. Por eso, muchas de las grandes emisoras de radio empiezan a experimentar con emisiones por Internet, la primera y más sencilla es una emisión en línea, la cual llega a un público global, de hecho su rápido desarrollo ha supuesto una rivalidad con la televisión, lo que irá aparejado con el desarrollo de la banda ancha en Internet.

.Espectro de frecuencias:
El espectro de frecuencia se caracteriza por la distribución de amplitudes para cada frecuencia de un fenómeno ondulatorio (sonoro, luminoso o electromagnético) que sea superposición de ondas de varias frecuencias. También se llama espectro de frecuencia al gráfico de intensidad frente a frecuencia de una onda particular.
El espectro de frecuencias o descomposición espectral de frecuencias puede aplicarse a cualquier concepto asociado con frecuencia o movimientos ondulatorios como son los colores, las notas musicales, las ondas electromagnéticas de radio o TV e incluso la rotación regular de la tierra.
.Espectro luminoso, sonoro y electromagnético:
Una fuente de luz puede tener muchos colores mezclados en diferentes cantidades (intensidades). Un arcoiris, o un prisma transparente, deflecta cada fotón según su frecuencia en un ángulo ligeramente diferente. Eso nos permite ver cada componente de la luz inicial por separado. Un gráfico de la intensidad de cada color deflactado por un prisma que muestre la cantidad de cada color es el espectro de frecuencia de la luz o espectro luminoso. Cuando todas las frecuencias visibles están presentes por igual, el efecto es el "color" blanco, y el espectro de frecuencias es uniforme, lo que se representa por una línea plana. De hecho cualquier espectro de frecuencia que consista en una línea plana se llama blanco de ahí que hablemos no solo de "color blanco" sino también de "ruido blanco".
De manera similar, una fuente de ondas sonoras puede ser una superposición de frecuencias diferentes. Cada frecuencia estimula una parte diferente de nuestra cóclea (caracol del oído). Cuando escuchamos una onda sonora con una sola frecuencia predominante escuhamos una nota. Pero en cambio un silbido cualquiera o un golpe repentino que estimule todos los receptores, diremos que contiene frecuencias dentro de todo el rango audible. Muchas cosas en nuestro entorno que calificamos como ruido frecuentemente contienen frecuencias de todo el rango audible. Así cuando un espectro de frecuencia de un sonido, o espectro sonoro. Cuando este espectro viene dada por una línea plana, decimos que el sonido asociado es ruido blanco. Otro ejemplo de especto de frecuencias de ondas sonoras es el encontrado en el análisis de la voz humana, por ejemplo cada vocal puede caracterizarse por la suma de ondas sonoras cuyas frecuencias recaen sobre bandas de frecuencia, denominadas formante, el oido humano es capaz de distinguir unas vocales de otras gracias a que puede discriminar dichos formantes, es decir, conocer parte del espectro de frecuencias presentes en una onda sonora que procude la articulación de dicha vocal.
Cada estación emisora de radio o TV es una fuente de ondas electromagnéticas que emite ondas cercanas a una frecuencia dada. En general las frecuencias se concentrará en una banda alrededor de la frecuencia nominal de la estación, a esta banda es a lo que llamamos canal. Una antena receptora de radio condensa diferentes ondas electromagnéticas en una única señal de amplitud de voltaje, que puede ser a su vez decodificada nuevamente en una señal de amplitud sonora, que es el sonido que oímos al encender la radio. El sintonizador de la radio selecciona el canal, de un modo similar a como nuestros receptores de la cóclea seleccionan una determinada nota. Algunos canales son débiles y otros fuertes. Si hacemos un gráfico de la intensidad del canal respecto a su frecuencia obtenemos el espectro electromagnético de la señal receptora.
.Análisis espectral:
Análisis se refiere a la acción de descomponer algo complejo en partes simples o identificar en ese algo complejo las partes más simples que lo forman. Como se ha visto, hay una base física para modelar la luz, el sonido o las ondas de radio en superposición de diferentes frecuencias. Un proceso que cuantifique las diversas intensidades de cada frecuencia se llama análisis espectral.
Matemáticamente el análisis espectral está relacionado con una herramienta llamada transformada de Fourier o análisis de Fourier. Dada una señal o fenómeno ondultorio de amplitud \scriptstyle s(t) esta se pude escribir matemáticamente como la siguiente combinación lineal generalizada:

s(t) = \int_\R A(\nu)e^{-2\pi i\nu t}d\omega
Es decir, la señal puede ser concebida como la transformada de Fourier de la amplitud \scriptstyle A=A(\nu). Ese análisis puede llevarse a cabo para pequeños intervalos de tiempo, o menos frecuentemente para intervalos largos, o incluso puede realizarse el análisis espectral de una función determinista (tal como \begin{matrix} \frac{\sin (t) }{t} \end{matrix}\,). Además la transformada de Fourier de una función no sólo permite hacer una descomposición espectral de los formantes de una onda o señal oscilatoria, sino que con el espectro generado por el análisis de Fourier incluso se puede reconstruir (sintetizar) la función original mediante la transformada inversa. Para poder hacer eso, la transformada no solamente contiene información sobre la intensidad de determinada frecuencia, sino también sobre su fase. Esta información se puede representar como un vector bidimensional o como un número complejo. En las representaciones gráficas, frecuentemente sólo se representa el módulo al cuadrado de ese número, y el gráfico resultante se conoce como espectro de potencia o densidad espectral de potencia (SP):

SP_\nu \propto |A(\nu)|^2
Es importante recordar que la transformada de Fourier de una onda aleatoria, mejor dicho estocástica, es también aleatoria. Un ejemplo de este tipo de onda es el ruido ambiental. Por tanto para representar una onda de ese tipo se requiere cierto tipo de promediado para representar adecuadamente la distribución frecuencial. Para señales estocásticas digitalizadas de ese tipo se emplea con frecuencia la transformada de Fourier discreta. Cuando el resultado de ese análisis espectral es una línea plana la señal que generó el espectro se denomina ruido blanco.
.Lenguaje radiofónico:
Este lenguaje debe utilizar un vocabulario de uso corriente, optando siempre por la aceptación más común de un término. Hay que utilizar también términos definitorios en la perspectiva de la economía de palabras que hemos aceptado como objetivo. En este sentido, los adjetivos son innecesarios casi siempre ya que aportan poca información. Su utilización en radio solamente es aceptable cuando el matiz que aportan ayuda a precisar la idea que se transmite. También debe eliminarse el adverbio, ya que su acción modificadora es en general innecesaria si se utilizan términos definitorios. Los más justificables son los de tiempo y lugar.
El verbo tiene un papel muy importante en la información radiofónica. Para ser más exactos el tiempo del verbo, ya que es uno de los elementos que denota más actualidad. En la redacción de la notícia de radio, el verbo hay que utilizarlo en presente de indicativo y en voz activa. El pasado no es noticia en radio. El presente denota inmediatez y por tanto, actualidad. En caso de no poder utilizar el presente recurriremos al pretérito más próximo, que es el perfecto. Como último recurso, el indefinido.
Como hemos mencionado anteriormente, la actualidad y la inmediatez son las principales característica de la información radiofónica. Esta actualidad debe quedar patente en los servicios informativos de una emisora y para ello hay que tener en cuenta aquellos recursos que remarcan dicha actualidad en radio. Podemos establecer tres grandes grupos: recursos técnicos, redaccionales y de programación.
.Recursos técnicos:
Podemos señalar la utilización del teléfono, las unidades móviles y las grabaciones en el lugar de los hechos.
.Recursos redaccionales:
La utilización del verbo en tiempo presente, así como la el uso de palabras y frases que denotan actualidad, como por ejemplo, "en estos momentos...", "al iniciar esta transmisión...", etc.
.Recursos de programación:
La inclusión de nuevos aspectos de las noticias dadas en anteriores servicios informativos. No basta con cambiar el redactado de las noticias, sino que hay que ofrecer nuevos datos, nuevos ángulos y repercusiones a lo largo del día.
En cuanto a los guiones, hay que señalar que la ley del péndulo ha sido aplicada a su consideración. Se ha pasado de la utilización del guion hasta para toser a la improvisación total. Últimamente, en radio, se utilizan los guiones indicativos o pautas. Este tipo de guion contiene las indicaciones técnicas y temáticas imprescindibles para lograr el acoplamiento del realizador y el editor-presentador. El guion indicativo contendrá el cronometraje de cada intervención, la persona que la realizará y especial atención a todas las fuentes de audio que intervengan.
Teniendo en cuenta todas las características de la redacción radiofónica, se concluye que no debe leerse un texto en radio si previamente no se reelabora, no sólo para darle un estilo propio, sino, principalmente, porque la estructura y concepción del mensaje de agencia o de los comunicados, es estructuralmente la de la expresión escrita, y en muchas ocasiones puede dar al error o a la deficiente recepción que tenga el oyente de ella.
 .Puntuación:
Resulta difícil cambiar los hábitos de puntuación que se han cultivado durante años, pero es imprescindible hacerlo. En radio, la puntuación sirve para asociar la idea expresada a su unidad sonora y, por tanto, para marcar unidades fónicas y no gramaticales como es usual en la cultura impresa. Para marcar estas unidades fónicas solo se necesitan dos signos de amplia gama que nos ofrece la escritura. Estos son la coma y el punto.
.Coma:
En el texto radiofónico marca una pequeña pausa que introduce una variación en la entonación y da lugar a la renovación de aire si es preciso. No se debe utilizar este signo si en la expresión oral no hay que realizar esa pausa, aunque fuera correcta su colocación en la redacción impresa. Cualquier alteración de esta norma contribuye a que la lectura de ese texto sea eso, una 'lectura' y no una 'expresión hablada' de unas ideas.
.Punto:
Es la señal que indica el final de una unidad fónica completa. La resolución de entonación que marca el punto puede ser de carácter parcial (en el caso de los puntos que marcan el final de una frase) y de carácter total (en los puntos que marcan el final de un párrafo). El punto señala una resolución de entonación más, que es la correspondiente al punto que indica el final del discurso y que tiene carácter culminante. El punto final de una frase supone una pausa más larga que la coma y al final de un párrafo indica una pausa algo mayor. Si se aplican correctamente estos signos la respiración no se encontrará con dificultad alguna y su realización no supondrá ninguna distorsión para la entonación.
.El resto de signos son casi innecesarios en su totalidad. Ninguna razón justifica la utilización del punto y coma (;), los dos puntos (:) o el punto y guion (.-). Con respecto a los paréntesis y a los guiones hay que tener en cuenta que en la mayor parte de los casos se introducen ideas adicionales que podrían perturbar la comprensión de la idea principal que tratamos de expresar.
-Móvil:
¿Qué es?
El teléfono móvil es un dispositivo inalámbrico electrónico para acceder y utilizar los servicios de la red de telefonía móvil. Se denomina también celular en la mayoría de países latinoamericanos debido a que el servicio funciona mediante una red de celdas, donde cada antena repetidora de señal es una célula, si bien también existen redes telefónicas móviles.
A partir del siglo XXI, los teléfonos móviles han adquirido funcionalidades que van mucho más allá de limitarse solo a llamar, traducir o enviar mensajes de texto, se puede decir que se han unificado (no sustituido) con distintos dispositivos tales como PDA, cámara de fotos, agenda electrónica, reloj despertador, calculadora, microproyector, GPS o reproductor multimedia, así como poder realizar una multitud de acciones en un dispositivo pequeño y portátil que lleva prácticamente todo el mundo de países desarrollados. A este tipo de evolución del teléfono móvil se le conoce como teléfono inteligente (o teléfono autómata).
La primera red comercial automática fue la de NTT de Japón en 1974 y seguido por la NMT, que funcionaba en simultáneo en Suecia, Dinamarca, Noruega y Finlandia en 1981 usando teléfonos de Ericsson y Mobira (el ancestro de Nokia). Arabia Saudita también usaba la NMT y la puso en operación un mes antes que los países nórdicos. El primer antecedente respecto al teléfono móvil en Estados Unidos es de la compañía Motorola, con su modelo DynaTAC 8000X. El modelo fue diseñado por el ingeniero de Motorola Rudy Krolopp en 1983. El modelo pesaba poco menos de un kilo y tenía un valor de casi 4000 dólares estadounidenses. Krolopp se incorporaría posteriormente al equipo de investigación y desarrollo de Motorola liderado por Martin Cooper. Tanto Cooper como Krolopp aparecen como propietarios de la patente original. A partir del DynaTAC 8000X, Motorola desarrollaría nuevos modelos como el Motorola MicroTAC, lanzado en 1989, y el Motorola StarTAC, lanzado en 1996 al mercado. Básicamente podemos distinguir en el planeta dos tipos de redes de telefonía móvil, la existencia de las mismas es fundamental para que podamos llevar a cabo el uso de nuestro teléfono celular, para que naveguemos en Internet o para que enviemos mensajes de texto como lo hacemos habitualmente. La primera red es la Red de Telefonía móvil de tipo analógica (TMA), la misma establece la comunicación mediante señales vocales analógicas, tanto en el tramo radioeléctrico como en el tramo terrestre; la primera versión de la misma funcionó en la banda radioeléctrica de los 450 MHz, luego trabajaría en la banda de los 900 MHz, en países como España, esta red fue retirada el 31 de diciembre de 2003. Luego tenemos la red de telefonía móvil digital, aquí ya la comunicación se lleva a cabo mediante señales digitales, esto nos permite optimizar el aprovechamiento de las bandas de radiofrecuencia como la calidad de la transmisión de las señales. El exponente más significativo que esta red posee actualmente es el GSM y su tercera generación UMTS, ambos funcionan en las bandas de 850/900 MHz, en el 2004, llegó a alcanzar los 100 millones de usuarios. Martin Cooper fue el pionero en esta tecnología, a él se le considera como "el padre de la telefonía celular" al introducir el primer radioteléfono, en 1973, en Estados Unidos, mientras trabajaba para Motorola; pero no fue hasta 1979 cuando aparecieron los primeros sistemas comerciales en Tokio, Japón por la compañía NTT.
En 1981, los países nórdicos introdujeron un sistema celular similar a AMPS (Advanced Mobile Phone System). Por otro lado, en Estados Unidos, gracias a que la entidad reguladora de ese país adoptó reglas para la creación de un servicio comercial de telefonía celular, en 1983 se puso en operación el primer sistema comercial en la ciudad de Chicago.
Con ese punto de partida, en varios países se diseminó la telefonía celular como una alternativa a la telefonía convencional inalámbrica. La tecnología tuvo gran aceptación, por lo que a los pocos años de implantarse se empezó a saturar el servicio. En ese sentido, hubo la necesidad de desarrollar e implantar otras formas de acceso múltiple al canal y transformar los sistemas analógicos a digitales, con el objeto de darle cabida a más usuarios. Para separar una etapa de la otra, la telefonía celular se ha caracterizado por contar con diferentes generaciones. A continuación, se describe cada una de ellas. En la actualidad tienen gran importancia los teléfonos móviles táctiles.
.Funcionamiento:
El teléfono es un instrumento de comunicación, que sirve para transmitir y reproducir nuestra voz hasta lugares remotos mediante la corriente eléctrica. Además del sonido, permite enviar datos, imágenes o cualquier otro tipo de información que pueda codificarse y convertirse en señales eléctricas.
Esta información viaja de un aparato a otro, entre los distintos puntos conectados a la red. La red telefónica se compone de todas las vías de transmisión entre los aparatos de los clientes o abonados, y de los elementos llamados “de conmutación”, que sirven para seleccionar una determinada ruta entre dos abonados.
El aparato de teléfono tiene un micrófono (que es el transmisor) que recibe el impacto de las ondas sonoras (nuestra voz al hablar) y transforma las vibraciones en impulsos eléctricos. La corriente eléctrica que así se genera se transmite a distancia. Un altavoz (que es el receptor) vuelve a convertir la señal eléctrica en sonido.
La comunicación telefónica es posible gracias a la interconexión entre centrales móviles y públicas. Según las bandas o frecuencias en las que opera el móvil, podrá funcionar en una parte u otra del mundo.
La telefonía móvil consiste en la combinación de una red de estaciones transmisoras o receptoras de radio (repetidores, estaciones base o BTS) y una serie de centrales telefónicas de conmutación de 1er y 5º nivel (MSC y BSC respectivamente), que posibilita la comunicación entre terminales telefónicos portátiles (teléfonos móviles) o entre terminales portátiles y teléfonos de la red fija tradicional.
En su operación, el teléfono móvil establece comunicación con una estación base y, a medida que se traslada, los sistemas computacionales que administran la red van transmitiendo la llamada a la siguiente estación base de forma transparente para el usuario. Es por eso que se dice que las estaciones base forman una red de celdas, cual panal de abeja, sirviendo cada estación base a los equipos móviles que se encuentran en su celda.
El sistema para marcar los números en los teléfonos ha evolucionado a lo largo de su historia. Hoy día existen dos formas de marcado, el de pulsos y el de tonos (o multifrecuencias).El sistema de pulsos, cada vez menos utilizado, está basado en un disco marcador: se hace girar el disco, con el dedo puesto en el agujero de la cifra correspondiente, hasta alcanzar el tope. Un muelle obliga al disco a volver a su posición inicial. El resultado es una serie de pulsos de llamada en la señal eléctrica que circula entre el aparato y la centralita.
En la actualidad, la mayoría de los teléfonos llevan botones en vez de disco de marcado y utilizan un sistema de tonos. Las centrales telefónicas modernas están diseñadas en principio para recibir tonos, pero pueden seguir recibiendo pulsos ya que durante muchos años este sistema fue el único disponible.
Todavía existen líneas telefónicas antiguas que no admiten tonos (señales de multifrecuencia), por lo que los teléfonos de botones disponen de un conmutador que permite seleccionar el envío de pulsos o tonos.
.Evolución teléfono móvil:
La evolución del teléfono móvil ha permitido disminuir su tamaño y peso, desde el Motorola DynaTAC, el primer teléfono móvil en 1983 que pesaba 800 gramos, a los actuales más compactos y con mayores prestaciones de servicio. El desarrollo de baterías más pequeñas y de mayor duración, pantallas más nítidas y de colores, la incorporación de software más amigable, hacen del teléfono móvil un elemento muy apreciado en la vida moderna.
El avance de la tecnología ha hecho que estos aparatos incorporen funciones que no hace mucho parecían futuristas, como juegos, reproducción de música MP3 y otros formatos, correo electrónico, SMS, agenda electrónica PDA, fotografía digital y video digital, videollamada, navegación por Internet, GPS, y hasta Televisión digital. Las compañías de telefonía móvil ya están pensando nuevas aplicaciones para este pequeño aparato que nos acompaña a todas partes. Algunas de esas ideas son: medio de pago, localizador e identificador de personas.
.Creación de un nuevo lenguaje:
La mayoría de los mensajes que se intercambian por este medio, no se basan en la voz, sino en la escritura. En lugar de hablar al micrófono, cada vez más usuarios —sobre todo jóvenes— recurren al teclado para enviarse mensajes de texto. Sin embargo, dado que hay que introducir los caracteres en el terminal, ha surgido un lenguaje en el que se abrevian las palabras valiéndose de letras, símbolos y números. A pesar de que redactar y teclear es considerablemente más incómodo que conversar, dado su reducido coste, se ha convertido en una seria alternativa a los mensajes de voz.
El lenguaje SMS, consiste en acortar palabras, sustituir algunas de ellas por simple simbología o evitar ciertas preposiciones, utilizar los fonemas y demás. La principal causa es que el SMS individual se limita a 160 caracteres, si se sobrepasa ese límite, el mensaje individual pasa a ser múltiple, lógicamente multiplicándose el coste del envío. Por esa razón se procura reducir el número de caracteres, para que de un modo sencillo de entender, entre más texto o bien cueste menos.
Según un estudio británico,entre los usuarios de 18 a 24 años un 42% los utilizan para coquetear; un 20%, para concertar citas románticas, y un 13%, para romper una relación.
A algunos analistas sociales les preocupa que estos mensajes, con su jerga ortográfica y sintáctica, lleven a que la juventud no sepa escribir bien. Sin embargo, otros opinan que “favorecen el renacer de la comunicación escrita en una nueva generación”. La portavoz de una editorial que publica un diccionario australiano hizo este comentario al rotativo The Sun-Herald: “No surge a menudo la oportunidad de forjar un nuevo estilo [de escritura] [...;] los mensajes de texto, unidos a Internet, logran que los jóvenes escriban mucho más. Necesitan tener un dominio de la expresión que les permita captar el estilo y defenderse bien con el vocabulario y el registro […] correspondientes a este género”.
Algunas personas prefieren enviar mensajes de texto (SMS) en vez de hablar directamente por cuestiones económicas. Dado que el coste de SMS es muy accesible frente al establecimiento de llamada y la duración de la llamada.
 .¿Tienen efectos en la salud los móviles?
En los dos últimos decenios se ha realizado un gran número de estudios para determinar si los teléfonos móviles pueden plantear riesgos para la salud. Hasta la fecha no se ha confirmado que el uso del teléfono móvil tenga efectos perjudiciales para la salud.

-Efectos a corto plazo:
La principal consecuencia de la interacción entre la energía radioeléctrica y el cuerpo humano es el calentamiento de los tejidos. En el caso de las frecuencias utilizadas por los teléfonos móviles, la mayor parte de la energía es absorbida por la piel y otros tejidos superficiales, de modo que el aumento de temperatura en el cerebro o en otros órganos del cuerpo es insignificante.
En varios estudios se han investigado los efectos de los campos de radiofrecuencia en la actividad eléctrica cerebral, la función cognitiva, el sueño, el ritmo cardíaco y la presión arterial en voluntarios. Hasta la fecha, esos estudios parecen indicar que no hay pruebas fehacientes de que la exposición a campos de radiofrecuencia de nivel inferior a los que provocan el calentamiento de los tejidos tenga efectos perjudiciales para la salud.
Además, tampoco se ha conseguido probar que exista una relación causal entre la exposición a campos electromagnéticos y ciertos síntomas notificados por los propios pacientes, fenómeno conocido como «hipersensibilidad electromagnética».
-Efectos a largo plazo:
Las investigaciones epidemiológicas para analizar los posibles riesgos a largo plazo derivados de la exposición a las radiofrecuencias se han centrado sobre todo en hallar un nexo entre los tumores cerebrales y el uso de teléfonos móviles. Sin embargo, dado que numerosos tipos de cáncer no son detectables hasta muchos años después del contacto que pudo provocar el tumor y el uso de los teléfonos móviles no se generalizó hasta principios del decenio de 1990, a día de hoy en los estudios epidemiológicos sólo pueden analizarse los tipos de cáncer que se manifiestan en un plazo más breve. Aun así, los resultados de estudios realizados con animales coinciden en que la exposición a largo plazo a campos de radiofrecuencias no aumenta el riesgo de contraer cáncer.
Se han realizado o están en curso varios estudios epidemiológicos multinacionales de gran envergadura, entre ellos estudios de casos y testigos y estudios prospectivos de cohortes, en los que se han examinado varios criterios de valoración en adultos. El mayor estudio retrospectivo de casos y testigos en adultos realizado hasta la fecha, conocido como INTERPHONE, coordinado por el Centro Internacional de Investigaciones sobre el Cáncer (CIIC), se ideó para determinar si había vínculos entre el uso de los teléfonos móviles y el cáncer de cabeza y cuello en adultos.
El análisis de los datos internacionales combinados procedentes de 13 países participantes no reveló un aumento del riesgo de glioma ni meningioma con el uso del teléfono móvil durante más de 10 años. Hay ciertos indicios de un aumento del riesgo de glioma en las personas que se hallaban en el 10% más alto de horas acumuladas de uso del móvil, aunque no se observó una tendencia uniforme de aumento del riesgo con el mayor tiempo de uso. Los investigadores señalaron que los sesgos y errores limitan la solidez de estas conclusiones e impiden hacer una interpretación causal. Basándose en buena parte en estos datos, el CIIC ha clasificado los campos electromagnéticos de radiofrecuencia como posiblemente carcinógenos para los seres humanos (grupo 2B), categoría que se utiliza cuando se considera que una asociación causal es creíble, pero el azar, los sesgos o los factores de confusión no pueden descartarse con una confianza razonable.
Si bien los datos obtenidos en el estudio INTERPHONE no indican un aumento del riesgo de sufrir tumores cerebrales, el uso cada vez mayor del teléfono móvil y la falta de datos referentes a su utilización por periodos de más de 15 años hacen evidente la necesidad de seguir investigando la relación del uso de este aparato con el riesgo de contraer cáncer cerebral. En concreto, dada la reciente popularidad de los teléfonos móviles entre los jóvenes y, por consiguiente, la posibilidad de una exposición más prolongada a lo largo de la vida, la OMS ha impulsado que se ahonden las investigaciones en este grupo de población. En estos momentos, se están llevando a cabo diversos estudios que investigan los posibles efectos sobre la salud de niños y adolescentes.
.Comparativa 3g y 4g:
-¿Qué es 3G y 4G?
La “G” representa una generación de tecnología móvil, instalado en los teléfonos y las redes celulares. Cada “G” por lo general requiere que el consumidor compre un teléfono nuevo, y para las redes móviles  hacer costosas actualizaciones. Los dos primeros fueron los teléfonos celulares analógicos (1G) y los teléfonos digitales (2G). Luego todo se complicó.
La tercera generación de redes móviles, o 3G, llegó al mercado en 2003. Con una velocidad mínima de Internet consistente de 144Kbps, se suponía que debían llevar la banda ancha al móvil. En la actualidad hay muchas variedades de 3G, sin embargo en una conexión ”3G” se puede obtener la velocidad de Internet  de 400Kbps,  o más de diez veces esa cantidad.
Los teléfonos 4G se supone que son aún más rápidos, pero eso no es siempre el caso. Hay tantas tecnologías llamadas “4G”, y tantas maneras de ponerlas en práctica, que el término es casi insignificante. Las tecnologías 4G incluyen a HSPA + 21/42, WiMAX y LTE.
No hay una regla común a seguir: Cada generación ofrece mayores velocidades de Internet que la anterior, es decir, en la misma compañía. WiMAX 4G de es casi siempre más rápido que su equivalente 3G. Sin embargo,  HSPA 3G puede ser más rápido que la red 4G LTE.

-Cuándo comprar 4G:
Las compañías de telefonía móvil todavía están construyendo sus redes 4G, por lo que en primer lugar, necesitas la cobertura 4G para apreciar un teléfono 4G. Si tu compañía de teléfono no la tiene, no podrás hacer uso de ella.
Si te gusta navegar por la Web y, especialmente, ver vídeos, 4G puede ser para ti. Si tu ordenador portátil tiene una conexión móvil, 4G hace una gran diferencia. En general, a cualquier cosa que implica la transferencia de grandes cantidades de datos le conviene 4G.
En cualquier caso, si quieres asegurar tu futuro, consigue un teléfono 4G. La cobertura 4G sólo va a mejorar, y ahí es donde las compañías están gastando la mayor parte de su dinero en estos momentos.

-Cuándo comprar 3G:
Si quieres un iPhone, este será 3G.  Es posible que Apple lanzará un iPhone 4G a finales de este año, pero la empresa no tiene actualmente un modelo de 4G. (Iphone 4 es 3G)
Si vives en un área que no tiene cobertura 4G, no hay ninguna ventaja el tener un teléfono 4G. De hecho, tendrás graves problemas en la vida de la batería si compras un teléfono 3G y no desactivas la red 4G, ya que al buscar en el radio una señal que no existe gastará la batería rápidamente.
En general, si prefieres una vida de la batería mayor a una velocidad de Internet mayor, los teléfonos 3G son la elección correcta.
 -Televisión:
 .¿Qué es?
Un televisor es un aparato electrónico destinado a la recepción y reproducción de señales de televisión. Usualmente consta de una pantalla y mandos o controles. La palabra viene del griego tele (τῆλε, «lejos») y latín visor (agente de videre, «ver»).
El televisor es la parte final del sistema de televisión, el cual comienza con la captación de las imágenes y sonidos en origen, y su emisión y difusión por diferentes medios. El televisor se ha convertido en un aparato electrodoméstico habitual, cotidiano y normal con amplia presencia en los hogares de todo el mundo. El primer televisor comercial fue creado el 26 de enero de 1926 por John Logie Baird.
.Funcionamiento:
-Tubos de raios catódicos:
El tubo de rayos catódicos (CRT, del inglés Cathode Ray Tube) es una tecnología que permite visualizar imágenes mediante un haz de rayos catódicos constante dirigido contra una pantalla de vidrio recubierta de fósforo y plomo. El fósforo permite reproducir la imagen proveniente del haz de rayos catódicos, mientras que el plomo bloquea los rayos X para proteger al usuario de sus radiaciones. Fue desarrollado por William Crookes en 1875. Se emplea principalmente en monitores, televisores y osciloscopios.
Las partes que componen un TRC son: 
.Filamento: Es el elemento calefactor del cátodo, es decir, le proporciona la energía calorífica necesaria para que se desprendan electrones del K.
.Cátodo: Cilindro hueco de níquel recubierto en su extremo derecho por sustancias emisoras de electrones (óxido de bario y estroncio). En su interior se encuentra el filamento. La tensión entre el K y el filamento no debe exceder del límite máximo marcado por cada tipo de tubo. 
.Wenhelt: También conocida como rejilla de control consiste en un cilindro metálico con un orificio circular en el fondo, el cual rodea al cátodo y cuya misión es la de controlar el flujo de electrones que desde el K se dirigen a la pantalla. 
.Ánodo acelerador: Existen 3, tienen forma de cilindro, ya dan una aceleración a los electrones a través de diferentes diferencias de potencial. 
.Ánodo de enfoque: Como a partir del primer ánodo acelerador el haz se hace divergente, ese necesario concentrarlo y para ello se utiliza el ánodo de enfoque. Cada tubo tiene una tensión de enfoque óptima. 
.Pantalla del tubo de imagen: Es la parte final del TRC y sobre la que va a incidir el haz de electrones que al chocar con ella producirá un punto luminoso. Está formada por: la parte externa de vidrio, la capa fluorescente que cubre la cara interna, y una película de aluminio vaporizado.


 -LCD:
Una pantalla de cristal líquido o LCD (sigla del inglés liquid crystal display) es una pantalla delgada y plana formada por un número de píxeles en color o monocromos colocados delante de una fuente de luz o reflectora. A menudo se utiliza en dispositivos electrónicos de pilas, ya que utiliza cantidades muy pequeñas de energía eléctrica.
Cada píxel de un LCD típicamente consiste de una capa de moléculas alineadas entre dos electrodos transparentes, y dos filtros de polarización, los ejes de transmisión de cada uno que están (en la mayoría de los casos) perpendiculares entre sí. Sin cristal líquido entre el filtro polarizante, la luz que pasa por el primer filtro sería bloqueada por el segundo (cruzando) polarizador.
La superficie de los electrodos que están en contacto con los materiales de cristal líquido es tratada a fin de ajustar las moléculas de cristal líquido en una dirección en particular. Este tratamiento suele ser normalmente aplicable en una fina capa de polímero que es unidireccionalmente frotada utilizando, por ejemplo, un paño. La dirección de la alineación de cristal líquido se define por la dirección de frotación.
Antes de la aplicación de un campo eléctrico, la orientación de las moléculas de cristal líquido está determinada por la adaptación a las superficies. En un dispositivo twisted nematic, TN (uno de los dispositivos más comunes entre los de cristal líquido), las direcciones de alineación de la superficie de los dos electrodos son perpendiculares entre sí, y así se organizan las moléculas en una estructura helicoidal, o retorcida. Debido a que el material es de cristal líquido birrefringente, la luz que pasa a través de un filtro polarizante se gira por la hélice de cristal líquido que pasa a través de la capa de cristal líquido, lo que le permite pasar por el segundo filtro polarizado. La mitad de la luz incidente es absorbida por el primer filtro polarizante, pero por lo demás todo el montaje es transparente.
Cuando se aplica un voltaje a través de los electrodos, una fuerza de giro orienta las moléculas de cristal líquido paralelas al campo eléctrico, que distorsiona la estructura helicoidal (esto se puede resistir gracias a las fuerzas elásticas desde que las moléculas están limitadas a las superficies). Esto reduce la rotación de la polarización de la luz incidente, y el dispositivo aparece gris. Si la tensión aplicada es lo suficientemente grande, las moléculas de cristal líquido en el centro de la capa son casi completamente desenrolladas y la polarización de la luz incidente no es rotada ya que pasa a través de la capa de cristal líquido. Esta luz será principalmente polarizada perpendicular al segundo filtro, y por eso será bloqueada y el pixel aparecerá negro. Por el control de la tensión aplicada a través de la capa de cristal líquido en cada píxel, la luz se puede permitir pasar a través de distintas cantidades, constituyéndose los diferentes tonos de gris.
El efecto óptico de un dispositivo twisted nematic (TN) en el estado del voltaje es mucho menos dependiente de las variaciones de espesor del dispositivo que en el estado del voltaje de compensación. Debido a esto, estos dispositivos suelen usarse entre polarizadores cruzados de tal manera que parecen brillantes sin tensión (el ojo es mucho más sensible a las variaciones en el estado oscuro que en el brillante). Estos dispositivos también pueden funcionar en paralelo entre polarizadores, en cuyo caso la luz y la oscuridad son estados invertidos. La tensión de compensación en el estado oscuro de esta configuración aparece enrojecida debido a las pequeñas variaciones de espesor en todo el dispositivo. Tanto el material del cristal líquido como el de la capa de alineación contienen compuestos iónicos. Si un campo eléctrico de una determinada polaridad se aplica durante un período prolongado, este material iónico es atraído hacia la superficie y se degrada el rendimiento del dispositivo. Esto se intenta evitar, ya sea mediante la aplicación de una corriente alterna o por inversión de la polaridad del campo eléctrico que está dirigida al dispositivo (la respuesta de la capa de cristal líquido es idéntica, independientemente de la polaridad de los campos aplicados)
Cuando un dispositivo requiere un gran número de píxeles, no es viable conducir cada dispositivo directamente, así cada píxel requiere un número de electrodos independiente. En cambio, la pantalla es multiplexada. En una pantalla multiplexada, los electrodos de la parte lateral de la pantalla se agrupan junto con los cables (normalmente en columnas), y cada grupo tiene su propia fuente de voltaje. Por otro lado, los electrodos también se agrupan (normalmente en filas), en donde cada grupo obtiene una tensión de sumidero. Los grupos se han diseñado de manera que cada píxel tiene una combinación única y dedicada de fuentes y sumideros. Los circuitos electrónicos o el software que los controla, activa los sumideros en secuencia y controla las fuentes de los píxeles de cada sumidero.
.El color del LCD:
En las pantallas LCD de color cada píxel individual se divide en tres células, o subpíxeles, de color rojo, verde y azul, respectivamente, por el aumento de los filtros (filtros de pigmento, filtros de tinte y filtros de óxido de metal). Cada subpíxel puede controlarse independientemente para producir miles o millones de posibles colores para cada píxel. Los monitores CRT usan la misma estructura de ‘subpíxeles' a través del uso de fósforo, aunque el haz de electrones analógicos empleados en CRTs no dan un número exacto de subpíxeles.
Los componentes de color pueden colocarse en varias formas geométricas de píxeles, en función del uso del monitor. Si el software sabe qué tipo de geometría se está usando en un LCD concreto, ésta puede usarse para aumentar la resolución del monitor a través de la presentación del subpixel. Esta técnica es especialmente útil para texto anti-aliasing.
 -LED:
Los televisores LED son los ultimos que han llegado al mercado del televisor domestico y parece ser que vienen para quedarse. En la actualidad compiten duramente con los televisores LCD y todo parece indicar que acabaran reemplazandolos y consecuentemente alcanzaran el liderazgo en las ventas que recientemente estos habian conseguido
Hay gente que piensa que los nuevos televisores LED que podemos adquirir para el salon estan realizados con diminutos leds que crean los pixeles, pero esto no es asi. Ese tipo de televisores led no esta disponible para el mercado domestico ya que los leds mas pequeños que existen en la actualidad son demasiado grandes como para generar un pixel lo suficientemente pequeño. Actualmente estos televisores led puros solo se utilizan para televisores gigantescos destinados a estadios de futbol y a publicidad exterior.
Los televisores LED en la actualidad son unicamente televisores LCD con una retroiluminacion diferente. En vez de retroiluminar al panel de cristal liquido con un fluorescente de catodos frios (CCFL) como se hace en los televisores LCD, en el caso del televisor LED la retroiluminacion se hace con lamparas LED.
No obstante, esto no significa que los actuales televisores LED no aporten ventajas frente a los LCD ni mucho menos, aunque estas ventajas varian dependiendo de la forma de retroiluminar con leds al televisor como veremos mas adelante.
.Como son y como funcionan:
El funcionamiento de los televisores LED no es muy diferente de los televisores LCD ya que como hemos indicado anteriormente viene a ser la misma tecnologia pero con distinta retroiluminacion, en los LCD se utiliza para retroiluminar un fluorescente y el los televisores LED se utilizan como el mismo nombre indica LEDs.
Por lo demas todo viene a ser igual, cada pixel esta formado por tres subpixeles de cristal liquido coloreados con los colores primarios rojo, verde y azul y como el cristal liquido emite ningun tipo de luz es necesaria la retroiluminacion en este caso suministrada por medio de LEDs de alta intensidad.
.Tipos de televisores LED:
.RGB Dynamic LED:
En estos televisores la retroiluminacion se hace por medio una gran cantidad de finos paneles LED con forma cuadrada o rectangular que estan situados detras del LCD.
El hecho de que sean multiples leds y no solo un solo led gigante o una unica fuente de luz aporta ventajas importantes a la hora de crear negros mas intensos y ratios de contraste mas elevados.
Esto se consigue analizando las secciones de cada una de las imagenes e iluminando los leds que correspondan mas o menos intensamente.
Por ejemplo si un fotograma tiene una puesta de sol, los leds que esten detras de los pixeles del panel lcd que representan al sol estaran encendidos con mayor intensidad que los LEDs que representan otras partes de la imagen que posen menos luz.
.Edge-LED:
Los televisores LED con tecnologia Edge-LED cuya traduccion literal seria Marco-LED utilizar para retroiluminar el panel LCD cientos de leds situados alrrededor del borde del televisor.
Para conseguir que la luz llegue al centro del televisor se utiliza un panel plastico especial que distribuye uniformemente la luz por toda su superficie desde los bordes donde estan situados los LED.
.Ventajas y Desventajas
Una desventaja del RGB Dynamic LED es que pierden intensidad los puntos de color brillante o zona pequeñas situadas en zonas oscuras. Por ejemplo si visualizamos un campo de estrellas como el color negro prevalece en la mayoria o todos los trozos del monitor entre los que se divide para realizar los calculos de intensidad de brillo, el televisor LED eligira bajar la intensidad de luz de todos o la mayoria de los led para conseguir un negro mejor, perjudicando el brillo de las estrellas
Una ventaja de los Edge-LED es que como no necesitan incluir nada detras del panel lcd estos pueden y de hecho son mucho mas finos.
-Plasma:
Pues aunque parezca mentira, y al contrario que los LCD, funcionan de manera similar a los televisores CRT tradicional. Al menos en el tema de los fósforos que generan la luz. En los televisores de plasma partimos de unos paneles de cristal divididos en celdas y que contienen una mezcla de gases nobles que cuando excitamos con electricidad, se convierte en plasma y los fósforos comienzan a emitir luz. He aquí la principal diferencia con los televisores LCD. En el caso de los plasmas, la luz la contienen ellos, no proviene de otro lugar, como pasa con la retroiluminación de los televisores LCD. Esto nos da como resultado más inmediato la principal característica de los televisores de plasma: el negro intenso que consiguen, todavía inalcanzable para la tecnología LCD.


.Los televisores de plasma también están formados por píxeles. A su vez, cada píxel dispone de tres celdas separadas en cada una de las cuales hay un fósforo de color distinto: rojo, azul y verde. Estos colores se mezclan para crear el color final del píxel.

.El funcionamiento por medio de fósforos de las pantallas de plasma, nos ofrece una serie de ventajas (mejor contraste y tiempo de respuesta muy rápido) pero también son la fuente de sus principales inconvenientes. Así, al estar basada la tecnología en fósforo, la exposición prolongada de una imagen estática durante un largo periodo de tiempo puede provocar un marcado en la pantalla muy molesto. Si siempre tiende a marcarse la misma zona, se podría producir lo que se denomina quemado de la pantalla.
Además, los fósforos tienden con el tiempo a agotarse y apagarse, lo que nos deja un tiempo de vida de las pantallas de plasma más reducido que en el caso de la tecnología LCD, como veremos en la comparativa. El descenso en calidad de imagen suele ser progresivo.
.Por último decir que debido al funcionamiento del plasma que se basa en gases, la altitud les afecta directamente, y aunque no debe ser el caso de la inmensa mayoría, cuidado con los televisores de plasma en grandes altitudes porque pueden llegar incluso a no funcionar.



-3D:
La Televisión 3D se refiere a un televisor que permite visualizar imágenes en 3 dimensiones, utilizando diversas técnicas para lograr la ilusión de profundidad (tres dimensiones o 3D).
Todo proceso que permite crear imágenes en 3D a partir de un par estéreo se conoce con el nombre de estereoscopía, y fundamentalmente se basa en el principio natural de la visión humana, en donde cada uno de nuestros ojos capta en un mismo instante una imagen ligeramente diferente a la del otro ojo, debido a la distancia que los separa. Ambas imágenes son procesadas por nuestro cerebro, permitiéndonos observar el mundo en 3D, tal como lo conocemos. Si bien la televisión comercial en 3D es relativamente nueva, las técnicas de visualización estereoscópicas son tan antiguas como los orígenes de la fotografía. Las imágenes de video proyectadas por un televisor en 3D (así como otros sistemas estereoscópicos como el Cine 3D), son creadas con el mismo principio: una escena es capturada a través de 2 cámaras ligeramente separadas, y luego es proyectada, utilizando lentes especiales de manera que cada imagen solo sea vista por uno de nuestros ojos.
La televisión estereoscópica comienza a ser el tipo más habitual de TV, con precios por debajo de los 300€, incluyendo grabador USB y, en algunos modelos, Smart TV1.

 -OLED:
Si las pantallas LED dijimos que nos traían al mundo de los televisores un menor grosor, consumo y mejores datos de calidad de imagen en el campo del contraste, las pantallas OLED afinan esas mejoras y las llevan un paso más allá.
La base de las pantallas OLED es un diodo orgánico de emisión de luz (Organic Light-Emitting Diode) que genera y emite luz por sí mismo. Esa características es la principal diferencia entre un televisor LED y uno OLED. En el primer caso, los LEDs son usados para iluminar el panel del televisor, pero los televisores OLED están formados por los propios diodos, que no necesitan fuente trasera de luz porque ellos son la luz.

Esa emisión de luz por sí mismos dota a las pantallas OLED de posibilidades en su grosor casi imposibles. Hay modelos de pantallas OLED de solo 0.05 mm de grosor, algo increíble, pero también podemos pensar en superficies que actúen como pantallas, aplicaciones en el hogar o pantallas flexibles, ya que en el caso de los diodos orgánicos, podemos colocarlos en capas de plástico, más flexibles que el cristal de los LCD.
.Mejoras en la imagen de la tecnología OLED:
Además de unos grosores casi inapreciables, la tecnología OLED es buena para los televisores porque mejora características básicas de la imagen. El caso más apreciable a simple vista es el contraste, que aumenta de forma exponencial. No depender de luz trasera hace que los píxeles de la imagen puedan tener negros más puros. Valores de millones en el contraste son habituales en las pantalla OLED.
El brillo y la flexibilidad son otras mejoras que acogen las pantallas que cuentan con tecnología OLED. También el ángulo de visión es mucho mejor, la velocidad de respuesta más veloz y todo ello con un consumo menor al no tener luz trasera, que como vemos es un clave importante para los televisores basados en esta tecnología.
Pero claro, una tecnología tan nueva también tiene inconvenientes que están en trámites de ser solucionados. El precio es el más mediático, con unos costes en tamaños grandes insostenibles, aunque este aspecto tendrá fácil solución en el momento en el que la producción aumente, pues es más económico fabricar equipos OLED que LED, por ejemplo.

Ya en el campo más técnico, los materiales OLED tiene un uso limitado debido a la degradación que sufren, principalmente el color azul (unas 14.000 horas de vida útil, aunque ya se ha dado con la clave para solucionarlo).
.Los ambientes con humedad o en general el agua es una de las pesadillas de los diodos orgánicos usados en los televisores OLED.
Por todo ello es en equipos de reducidas dimensiones donde las podemos ver ahora. Tampoco hay que dejar de lado el dilema que plantean para su reciclaje, nada claro todavía.
-Internet:
-¿Qué es?
Internet es un conjunto descentralizado de redes de comunicación interconectadas que utilizan la familia de protocolos TCP/IP, lo cual garantiza que las redes físicas heterogéneas que la componen funcionen como una red lógica única, de alcance mundial. Sus orígenes se remontan a 1969, cuando se estableció la primera conexión de computadoras, conocida como Arpanet, entre tres universidades en California y una en Utah, Estados Unidos.
Uno de los servicios que más éxito ha tenido en Internet ha sido la World Wide Web (WWW o la Web), a tal punto que es habitual la confusión entre ambos términos. La WWW es un conjunto de protocolos que permite, de forma sencilla, la consulta remota de archivos de hipertexto. Esta fue un desarrollo posterior (1990) y utiliza Internet como medio de transmisión.
Existen, por tanto, muchos otros servicios y protocolos en Internet, aparte de la Web: el envío de correo electrónico (SMTP), la transmisión de archivos (FTP y P2P), las conversaciones en línea (IRC), la mensajería instantánea y presencia, la transmisión de contenido y comunicación multimedia —telefonía (VoIP), televisión (IPTV)—, los boletines electrónicos (NNTP), el acceso remoto a otros dispositivos (SSH y Telnet) o los juegos en línea.

-Protocolo:
.IP:
Internet Protocol (en español Protocolo de Internet) o IP es un protocolo de comunicación de datos digitales clasificado funcionalmente en la Capa de Red según el modelo internacional OSI.
Su función principal es el uso bidireccional en origen o destino de comunicación para transmitir datos mediante un protocolo no orientado a conexión que transfiere paquetes conmutados a través de distintas redes físicas previamente enlazadas según la norma OSI de enlace de datos.
.TCP :
Transmission Control Protocol (en español Protocolo de Control de Transmisión) o TCP, es uno de los protocolos fundamentales en Internet. Fue creado entre los años 1973 y 1974 por Vint Cerf y Robert Kahn.
Muchos programas dentro de una red de datos compuesta por computadoras, pueden usar TCP para crear conexiones entre ellos a través de las cuales puede enviarse un flujo de datos. El protocolo garantiza que los datos serán entregados en su destino sin errores y en el mismo orden en que se transmitieron. También proporciona un mecanismo para distinguir distintas aplicaciones dentro de una misma máquina, a través del concepto de puerto.
TCP da soporte a muchas de las aplicaciones más populares de Internet (navegadores, intercambio de ficheros, clientes FTP, etc.) y protocolos de aplicación HTTP, SMTP, SSH y FTP.
.HTML:
HTML, siglas de HyperText Markup Language («lenguaje de marcas de hipertexto»), hace referencia al lenguaje de marcado para la elaboración de páginas web. Es un estándar que, en sus diferentes versiones, define una estructura básica y un código (denominado código HTML) para la definición de contenido de una página web, como texto, imágenes, etc. Es un estándar a cargo de la W3C, organización dedicada a la estandarización de casi todas las tecnologías ligadas a la web, sobre todo en lo referente a su escritura e interpretación.
El lenguaje HTML basa su filosofía de desarrollo en la referenciación. Para añadir un elemento externo a la página (imagen, vídeo, script, etc.), este no se incrusta directamente en el código de la página, sino que se hace una referencia a la ubicación de dicho elemento mediante texto. De este modo, la página web contiene sólo texto mientras que recae en el navegador web (interpretador del código) la tarea de unir todos los elementos y visualizar la página final. Al ser un estándar, HTML busca ser un lenguaje que permita que cualquier página web escrita en una determinada versión, pueda ser interpretada de la misma forma (estándar) por cualquier navegadores web actualizado.
Sin embargo, a lo largo de sus diferentes versiones, se han incorporado y suprimido características, con el fin de hacerlo más eficiente y facilitar el desarrollo de páginas web compatibles con distintos navegadores y plataformas (PC de escritorio, portátiles, teléfonos inteligentes, tablets, etc.). Sin embargo, para interpretar correctamente una nueva versión de HTML, los desarrolladores de navegadores web deben incorporar estos cambios y el usuario debe ser capaz de usar la nueva versión del navegador con los cambios incorporados. Usualmente los cambios son aplicados mediante parches de actualización automática (Firefox, Chrome) u ofreciendo una nueva versión del navegador con todos los cambios incorporados, en un sitio web de descarga oficial (Internet Explorer). Un navegador no actualizado no será capaz de interpretar correctamente una página web escrita en una versión de HTML superior a la que pueda interpretar, lo que obliga muchas veces a los desarrolladores a aplicar técnicas y cambios que permitan corregir problemas de visualización e incluso de interpretación de código HTML. Así mismo, las páginas escritas en una versión anterior de HTML deberían ser actualizadas o reescritas, lo que no siempre se cumple. Es por ello que ciertos navegadores aún mantienen la capacidad de interpretar páginas web de versiones HTML anteriores. Por estas razones, aún existen diferencias entre distintos navegadores y versiones al interpretar una misma página web.


-Impacto social:
Internet tiene un impacto profundo en el mundo laboral, el ocio y el conocimiento a nivel mundial. Gracias a la web, millones de personas tienen acceso fácil e inmediato a una cantidad extensa y diversa de información en línea. Este nuevo medio de comunicación logró romper las barreras físicas entre regiones remotas, sin embargo el idioma continua siendo una dificultad importante. Si bien en un principio nació como un medio de comunicación unilateral destinado a las masas, su evolución en la llamada Web 2.0 permitió la participación de los ahora emisores-receptores, creándose así variadas y grandes plazas públicas como puntos de encuentro en el espacio digital.
Comparado a las enciclopedias y a las bibliotecas tradicionales, la web ha permitido una descentralización repentina y extrema de la información y de los datos. Algunas compañías e individuos han adoptado el uso de los weblogs, que se utilizan en gran parte como diarios actualizables, ya en decadencia tras la llegada de las plataformas sociales. La automatización de las bases de datos y la posibilidad de convertir cualquier computador en una terminal para acceder a ellas, ha traído como consecuencia la digitalización de diversos trámites, transacciones bancarias o consultas de cualquier tipo, ahorrando costos administrativos y tiempo del usuario. Algunas organizaciones comerciales animan a su personal para incorporar sus áreas de especialización en sus sitios, con la esperanza de que impresionen a los visitantes con conocimiento experto e información libre.
-Usuarios:
En general el uso de Internet ha experimentado un tremendo crecimiento. De 2000 a 2009, el número de usuarios de Internet a nivel mundial aumentó 394 millones a 1858 millones. En 2010, el 22 por ciento de la población mundial tenía acceso a las computadoras con mil millones de búsquedas en Google cada día, 300 millones de usuarios de Internet leen blogs, y 2 mil millones de videos vistos al día en YouTube.
El idioma predominante de la comunicación en internet ha sido inglés. Este puede ser el resultado del origen de la internet, así como el papel de la lengua como lengua franca. Los primeros sistemas informáticos se limitaban a los personajes en el Código Estándar Americano para Intercambio de Información (ASCII), un subconjunto del alfabeto latino


2 comentarios:

  1. Me pareció muy excelente la ilustración de lo narrado ya que muchos ven la mejor manera de comunicarse a través de selfies o codigos para no estar con esas engorrosas ideas de la comunicación a través de un sistema.

    ResponderEliminar
  2. https://gacetafrontal.com/biografia-de-jose-balta/
    Son muchos los políticos representativos que podemos encontrar dentro de la historia del Perú, básicamente, estudiando la biografía de José Balta,

    ResponderEliminar